Pyrrolo Annelated Tetrathiafulvalenes: The Parent Systems

Jan Oskar Jeppesen, Kazuo Takimiya,[†] Frank Jensen, and Jan Becher*

Department of Chemistry, Odense University (University of Southern Denmark), Campusvej 55, DK-5230, Odense M, Denmark

jbe@chem.sdu.dk

Received August 23, 1999

ABSTRACT

The synthesis of the parent bis(pyrrolo[3,4-d])tetrathiafulvalene via a nonclassical and simple pyrrole synthesis is reported, together with a detailed study of the fundamental redox behavior of some of this class of heterocycles.

The chemistry of tetrathiafulvalene (TTF, **1**) and its derivatives has been intensively studied since the discovery of the first metallic charge-transfer TTF complex.¹ The TTF skeleton has been extensively modified over the past two decades to favor enhanced dimensionality in the related charge-transfer salts.² Among those modifications, the heterocyclic-fused TTF donor, bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, **2**) has given rise to more superconducting salts than any other TTF derivative, with κ -(BEDT-TTF)₂-Cu[N(CN)₂]Br as the current record holder.³

Many other donor molecules have been synthesized in which the TTF core is annelated to benzenoid (3),⁴ furan,⁵ thiophene,⁶ or selenophene⁷ units (4) (Figure 1); all of these

(2) (a) Otsubo, T.; Aso, Y.; Takimiya, K. *Adv. Mater.* **1996**, *8*, 203–211. (b) Bryce, M. R. *J. Mater. Chem.* **1995**, *5*, 1481–1496. (c) Garin, J. *Adv. Heterocycl. Chem.* **1995**, *62*, 249–304. (d) Adam, M.; Müllen, K. *Adv. Mater.* **1994**, *6*, 439–459. (e) Schukat, G.; Fanghänel, E. *Sulfur Rep.* **1996**, *18*, 1–294.

- (3) Kini, A. M.; Geiser, U.; Wang, H. H.; Carlson, K. D.; Williams, J. M.; Kwok, W. K.; Vandervoort, K. G.; Thompson, J. E.; Stupka, D. L.; Jung, D.; Whangbo, M.-H. *Inorg. Chem.* **1990**, *29*, 2555–2557.
- (4) Lerstrup, K.; Talham, D.; Bloch, A.; Cowan, D. J. Chem. Soc., Chem. Commun. 1982, 336–337.

(5) Siquot, Y.; Frère, P.; Nozdryn, T.; Cousseau, J.; Sallé, M.; Jubault, M.; Orduna, J.; Garín, J.; Gorgues, A. *Tetrahedron Lett.* **1997**, *38*, 1919–1922.

(7) Ketcham, R.; Hörnfeldt, A.-B.; Gronowitch, S. J. Org. Chem. 1984, 49, 1117–1119.

10.1021/ol9902428 CCC: \$18.00 © 1999 American Chemical Society Published on Web 09/28/1999

compounds have oxidation potentials appreciably higher than that of TTF itself. Cava and co-workers have recently presented a detailed study of bis(2,5-dimethylpyrrolo[3,4d])tetrathiafulvalene (**5**) and its *N*-alkylated derivatives.⁸ The synthesis of **5** involves classical pyrrole chemistry, building up the 1,3-dithiole-2-thione moiety from a 2,5-dimethylpyrrole core.⁹ Annelation of TTF to two electron rich 2,5dimethylpyrrole rings produces a donor system with a lower

LETTERS 1999 Vol. 1, No. 8 1291–1294

ORGANIC

[†]Current address: Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan.

⁽¹⁾ Ferraris, J. P.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. J. Am. Chem. Soc. 1973, 95, 948-949.

⁽⁶⁾ Shu, P.; Chiang, L.; Emge, T.; Holt, D.; Kistenmacher, T.; Lee, M.; Stokes, J.; Poehler, T.; Bloch, A.; Cowan, D. J. Chem. Soc., Chem. Commun. **1981**, 920–921.

^{(8) (}a) Zong, K.; Chen, W.; Cava, M. P.; Rogers, R. D. J. Org. Chem. **1996**, *61*, 8117–8124. (b) Chen, W.; Cava, M. P.; Takassi, M. A.; Metzger, R. M. J. Am. Chem. Soc. **1988**, *110*, 7903–7904.

⁽⁹⁾ The two methyl groups are mandatory in this synthesis because the first step is an electrophile thiocyanation at the β -positions and they serve to block the more reactive α -positions.

oxidation potential than that of the parent TTF (1), and we have found **5** to be a useful building block in supramolecular chemistry, devoid of *cis/trans* isomerism as in the simple TTFs.¹⁰ However, the four methyl groups in **5**, acting as protecting groups during synthesis, block the α -positions in the pyrrole units and exclude the possibility for further *C*-functionalization in addition to *N*-alkylations. Furthermore, steric hindrance can be expected from the methyl groups, when **5** is incorporated in macrocyclic systems.

In this context bis(pyrrolo[3,4-d])tetrathiafulvalene (6) appeared interesting and we present here a straightforward access to 6 and the related monopyrrolo annelated TTF **19**, through a nonclassical pyrrole synthesis.¹¹

The construction of α, α' -unsubstituted *N*-tosyl-2,5-dihydropyrrole annelated heterocycles **8** from tosylamide/sodium tosylamide (Scheme 1) and unsaturated 1,2-bishalomethyl

precursors **7** has been sporadically described in the literature.¹² However, to the best of our knowledge subsequent oxidations to the corresponding *N*-tosylpyrroles **9** and complete detosylation to give α , α' -unsubstituted pyrroles **10** have apparently not been reported.¹³

In our approach the pyrrole ring is constructed in two steps from a 1,3-dithiole-2-thione core bearing two vicinal bromomethyl groups, where the first step is a ring closure reaction with sodium tosylamide followed by oxidation of the annelated dihydropyrrole ring to give the *N*-tosylprotected pyrrole. The tosyl group plays a triple role. First, it activates the nitrogen in the ring closure reaction. Second, it works as an excellent protecting group for the pyrrole

(10) (a) Simonsen, K. B.; Zong, K.; Rogers, R. D.; Cava, M. P.; Becher, J. J. Org. Chem. **1997**, 62, 679–686. (b) Lau, J.; Nielsen, M. B.; Thorup, N.; Cava, M. P.; Becher, J. *Eur. J. Org. Chem.* In press.

(12) (a) Scheffer, J. R.; Ihmels, H. Liebigs Ann./Recl. 1997, 1925–1929.
(b) Kim, W.-J.; Kim, B.-J.; Lee, T.-S.; Nam, K.-S.; Kim, K.-J. Heterocycles
1995, 41, 1389–1397. (c) Jendralla, H.; Fisher, G. Heterocycles 1995, 41, 1291–1298. (d) Bottino, F.; Grazia, M. D.; Finocchiaro, P.; Fronczek, F. R.; Mamo, A.; Pappalardo, S. J. Org. Chem. 1988, 53, 3521–3529. (e) Stapler, J. T.; Bornstein, J. J. Heterocycl. Chem. 1973, 10, 983–988.

(13) The dehydrogenation of *N*-alkyl/arylsulfonyl-2,5-dihydropyrroles with different oxidation agents has been described, see: (a) Suzuki, T.; Ohyabu, H.; Takayama, H. *Heterocycles* **1997**, *46*, 199–202. (b) Xu, Z.; Lu, X. *Tetrahedron Lett.* **1997**, *38*, 3461–3464. (c) Ando, K.; Kankake, M.; Suzuki, T.; Takayama, H. *Tetrahedron* **1995**, *51*, 129–138. (d) Suzuki, T.; Takayama, H. *J. Chem. Soc., Chem. Commun.* **1995**, 807–808. (e) Ando, K.; Kankake, M.; Suzuki, T.; Takayama, H. *J. Chem. Soc., Chem. Commun.* **1992**, 1100–1102.

nitrogen during the harsh triethyl phosphite coupling reaction. Finally, the tosyl groups can be removed almost quantitatively under mild conditions from the aromatic pyrrole ring.

The π -donor ability of the new systems was investigated by cyclic voltammetry as well as preliminary formation of a tetracyanoquinodimethane (TCNQ) complex.

The starting material in our synthesis is diol 11,¹⁴ which was dibrominated with phosphorus tribromide (PBr₃) to give dibromide 12 (Scheme 2).^{15,16}

Cyclization was performed by treatment of **12** with sodium tosylamide, affording the dihydropyrrolo compound **13a** in 61% yield. Transchalcogenation of thione **13a** with mercuric acetate gave ketone **13b** in 99% yield.¹⁷ Dehydrogenation of **13a,b** with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) afforded the *N*-tosylated (1,3)-dithiolo[4,5-*c*]pyrrole-2-chalcogenones **14a,b** in 75% and 95% yields, respectively. Detosylation of **14a** was carried out by treatment of **14a** with sodium methoxide, affording the pyrrole **15** in 84% yield.¹⁸

Self-coupling of the ketone **14b** to the TTF **16** using triethyl phosphite proceeded in 84% yield (Scheme 3).

Scheme 3. Synthesis of Bis(pyrrolo[3,4-d])tetrathiafulvalenes 14b $P(OEt)_3, 120^{\circ}C, 5h = Ts - N \xrightarrow{S}_{16} \xrightarrow{S}_{16} N - Ts$ NaOMe THF / MeOH (1:1), reflux, 30 min quant. NaH (excess) RX DMF, 0°C, 1h $R - N \xrightarrow{S}_{6} \xrightarrow{S}_{5} N - R$ 17a R = CH₃, X = 1, 82% 17b R = CH₂CH₂CH₂CH₃, X = Br, 83%

Removal of the tosyl protecting groups of **16** was carried out by treatment of **16** with sodium methoxide to give the

⁽¹¹⁾ For a comprehensive review on pyrrole synthesis, see: Bird, C. W. *Comprehensive Heterocyclic Chemistry II*, Vol. 2; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; pp 1–257.

novel bis(pyrrolo)-TTF **6** in quantitative yield. Finally **6** was dialkylated to give the N,N'-dialkyl derivatives **17a,b** in 82–83% yields (Scheme 3).

The asymmetrical monopyrrolo-TTF **19** (Scheme 4) was obtained in optimum yield by cross-coupling of **14b** with 4,5-bis(methylthio)-1,3-dithiole-2-thione in neat triethyl phophite followed by detosylation of **18** using sodium methoxide. Likewise, alkylation of **19** proceeded smoothly to give the *N*-alkylated derivatives **20a**,**b**. Single crystals of **20b** were obtained by recrystallization from dichloromethane—hexane, and its structure was confirmed by X-ray crystallography.¹⁹

Solution oxidation potentials obtained from cyclic voltammograms (CVs) of pyrrolo-TTF π donors (D) and DFT calculated first oxidation potentials are summarized in Table 1.^{20,21}

The CVs of all compounds showed two pairs of reversible redox waves, indicating good stability of the corresponding radical cation (D⁺) and dication (D²⁺). Compound **6** showed a higher first half-wave oxidation potential $E_{1/2}^{1}$ (50 mV) than its $\alpha, \alpha', \alpha'', \alpha'''$ -tetramethylated analogue **5**. This effect was also observed for **19** and its α, α' -bismethylated analogue

Table 1.	Oxidation Potentials $E_{1/2}^1$ and $E_{1/2}^2$ of New TTH
Derivative	es 6, 16, 17a,b, 18, 19, and 20a,b Determined by
Cyclic Vo	oltammetry ^{<i>a,b</i>}

compound	$E_{1/2}{}^1 \; [V]$	$E_{1/2}{}^2 \; [V]$	$\Delta E_{\rm p}$ [V]	$E_{ox}^{1}(DFT)$ [eV]
TTF (1)	0.34	0.73	0.39	4.65
5	0.33	0.74	0.41	4.45
6	0.38	0.72	0.34	4.56
16 ^c	0.55	0.96	0.41	4.91
17a	0.36	0.70	0.34	4.49
17b	0.36	0.70	0.34	
18	0.59	0.86	0.27	4.82
19	0.44	0.75	0.31	4.65
20a	0.42	0.74	0.32	4.61
20b	0.42	0.73	0.31	
21	0.42	0.76	0.34	4.59

^{*a*} Conditions: Ag/AgCl electrode, Pt electrode, 20 °C, Bu₄NPF₆ (0.1 M in CH₃CN), scan rate 0.1 Vs⁻¹, [compound] 10⁻³ M. E_{ox}^{1} (DFT) is the calculated first oxidation potentials using the B3LYP/6-31G(d) method and the PCM solvent model. ^{*b*} The oxidation potentials for parent TTF, bis(2,5-dimethylpyrrolo-[3,4-*d*])tetrathiafulvalene (**5**).⁸ and 4,6-dimethyl-2-{4,5-bis(methylthio)-1,3-dithiole-2-yliden}-(1,3)-dithiolo[4,5-*c*]pyrrole (**21**) (i.e., α, α' -dimethyl-substituted analogue of **19**)²² were for comparison measured under identical conditions. ^{*c*} [**16**] \ll 10⁻³ M, due to the low solubility in CH₃CN.

21 (20 mV) due to the electron-donating effect of the α -methyl groups. The first half-wave oxidation potential $E_{1/2}^{11}$ of **6** is higher (40 mV) than that of TTF (**1**), indicating that annelation of two pyrrolo units to the TTF framework results in a decrease of the electron-donating ability. Both for the bis(pyrrolo)-TTF series and the monopyrrolo-TTF series the *N*-tosylated pyrrolo-TTFs (i.e., **16** and **18**) showed the highest oxidation potentials (both $E_{1/2}^{11}$ and $E_{1/2}^{22}$), whereas the *N*-alkylated pyrrolo-TTFs (i.e., **17a,b** and **20a,b**) showed the inductive effect exhibited from the tosyl groups and alkyl groups, respectively. As shown in Table 1, the calculated E_{ox}^{11} (DFT) reproduces the major trends in the experimental first oxidation potentials $E_{1/2}^{11}$.

An interesting feature of the monopyrrolo-TTFs is found in their ¹³C chemical shifs, which are summarized in Table 2 together with the ¹H chemical shifts.

As expected, the tosyl group has a strong influence on the chemical shift of the pyrrole protons. The most remarkable fact, however, is that the tosyl group is able to shift most of the ¹³C resonances in **18**. Especially for the fulvene $C_a=C$, which is located six bonds away from the tosyl group, a significant change in the chemical shift is observed, indicating a pronounced extension of the π -surface in monopyrrolo-TTFs.

⁽¹⁴⁾ Jeppesen, J. O.; Takimiya, K.; Thorup, N.; Becher, J. Synthesis 1999, 5, 803-810.

⁽¹⁵⁾ Recently an experimental procedure using CBr₄/PPh₃ has been reported by Müllen and co-workers, see: Skabara, P. J.; Müllen, K.; Bryce, M. R.; Howard, J. A. K.; Batsanov, A. S. *J. Mater. Chem.* **1998**, *8*, 1719–1724.

⁽¹⁶⁾ The use of PBr₃ has been reported in a communication from Gorgues and co-workers, see: Durand, C.; Hudhomme, P.; Duguay, G.; Jubault, M.; Gorgues, A. *Chem. Commun.* **1998**, 361–362.

⁽¹⁷⁾ Self-coupling of **13b** using triethyl phosphite afforded bis(2,5dihydro-*N*-tosylpyrrolo[3,4-*d*])tetrathiafulvalene in 35% yield. All attempts to remove the tosyl groups failed due to the chemical stability of the sulfamide bond.

⁽¹⁸⁾ Care must be taken during workup, especially with regard to temperature; otherwise ring opening occurs in the 1,3-dithiole ring and a mixture of **15** and 3,4-bis(methylthio)pyrrole is isolated.

⁽¹⁹⁾ The X-ray data and molecular structure are included as Supporting Information.

⁽²⁰⁾ The first oxidation potentials were calculated from the energy difference between D and $D^{\bullet+}$ with the B3LYP/6-31G(d) method and the PCM solvent model, using PM3-optimized geometries.

⁽²¹⁾ Gaussian 98 (Revision A.5). Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Nudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Comperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1998.

Table 2. ¹H NMR Chemical Shifts for Pyrrole α-protons and Selected ¹³C NMR Chemical Shifts (in ppm) for *N*-Substituted Asymmetrical Monopyrrolo-TTF **18**, **19**, and **20a**^{*a*}

	fulvene	fulvene	dithiole		
R	$C_{a}=C$	$C = C_b$	$=C_{c}C=$	pyrrole C_d	H_{α}
Ts	112.54	117.73	126.14	112.84	7.40
Н	107.27	121.95	117.16	110.88	6.81
Me	107.24	121.34	116.77	114.66	6.78

 a Spectra were recorded in DMSO- d_6 (25 °C) at 300 and 75 MHz for protons and carbons, respectively.

To shed more light on the extension of the π -surface in pyrrolo-TTFs, the characters of the highest occupied molecular orbital (HOMO) of **6** and **19** were calculated using the semiempirical PM3 method.²³ Figure 2 shows the electron

Figure 2. HOMO orbital of 6: light face numbers = HOMO electron density, bold face numbers = HOMO coefficients.

distribution of 6, and it is noteworthy that approximately 20% of the HOMO density is located on the outer two

pyrrole rings, similar to that of BEDT-TTF (2) where the outer sulfur atoms have relatively large HOMO densities with the same phase as the inner sulfur atoms.²⁴

For the asymmetrical monopyrrolo-TTF **19**, approximately 13% of the HOMO density is located on the outer pyrrole ring, clearly demonstrating an extension of the π -surface in pyrrolo-TTFs.

A combination of equimolar amounts of the new donor **6** and TCNQ gave a 1:1 charge transfer complex, and its conductivity on a single crystal at room temperature was relatively high, 0.02 S cm^{-1} .

In conclusion, we have demonstrated an efficient short route to the potentially useful symmetric bis(pyrrolo)-TTF **6** and the asymmetric monopyrrolo-TTF **19** and proved that the new approach for construction of α, α' -unsubstituted pyrrolo annelated heterocycles is useful for 1,3-dithiole-2-thione. This route can probably be extended to other fused pyrroles as well.

Investigations in the direction of tetrathiafulvalenecontaining polypyrroles and porphyrin²⁵ systems are currently in progress.

Acknowledgment. We thank University of Odense for a Ph.D. scholarship to J.O.J. and the Danish Research Academy for a postdoctoral fellowship to K.T.

Supporting Information Available: Compound characterization data; X-ray crystal structure, crystal data, data collection details and refinement parameters for **20b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL9902428

(25) See, for example: Ramondenc, Y.; Schwenninger, R.; Phan, T.; Gruber, K.; Kratky, C.; Kräutler, B. Angew. Chem., Int. Ed. Engl. **1994**, 33, 889–891.

⁽²²⁾ Lomholt, C.; Nielsen, M. B.; Becher, J. Unpublished results. (23) (a) Stewart, J. J. P. *J. Comput. Chem.* **1989**, *10*, 209–220. (b)

Stewart, J. J. P. J. Comput. Chem. 1989, 221–264. (24) Mori, T.; Kobayashi, A.; Sasaki, Y.; Saito, G.; Inokuchi, H. Bull. Chem. Soc. Jpn. 1984, 57, 627–633.